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Multiobjective Non-Differentiable Fractional
Symmetric Mixed Duality using p-F convexity
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Abstract—  Mixed symmetric dual models far
nondifferentiable multiobjective fractional programmeing
problem are introduced. Weak and strong duality theorems are
established far these models under generalized convexity.
Several special cases are also obtained.

Index Terms— Non differentiable fractional programming,
symmetric duality, generalized convexity, p-function.

I. INTRODUCTION

Multiobjective fractional programming duality has been
of much interest in the recent past. Schaible [8] and Bectar et
al [2] derived Fritz John and Karush-Kuhn Tucker necessary
and sufficient optimality condition for a class of
nondifferentiable  convex  multiobjective  fractional
programming problems and established some duality
theorems. Liang et al [3] and santos et al [7] discussed the
optimality and duality for nonsmooth fractional programming
with generalized convexity. Bectar et al [1] and Xu [9] gave a
mixed type duality for fractional programming, established
some sufficient condition and obtained various duality
reseults between the mixed dual and primal problem.

Several authors, such as the ones of [4, 5, 6, 10, 11],
studied second and higher order symmetric duality.

In this paper we introduced new type of mixed symmetric
dual models for non-differentiable multiobjective fractional
programming problem. The advantage of this model is that it
allows further weakning of convexity on the functions
invalued. We establish weak and strong duality theorems for
this model.

Il. PRELIMINARIES :

Let C be a compact set in R". The support function of C is
defined by

s(x|c) = max {x"y:yec}.
Definition : 1
Let XcR" . A
X x X x R"— R is said to be sublinear with respect to its
third argument if for any x, y € X
(i)
F(x,y;a,+a,) < F(x,y;a,) + F(x,y;a,)  for  any

functional F:

a,,a, eR";
(ii) F(x,y; aa)< aF(x,y;a) for any o R,
and a eR"
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Definition : 2
A differentiable function f is said to be p-F
convex at X €y if

2
, VX eX

f(xy)-f (i, y) > F(x, X, V,f (i, y)) + pHX - i‘
Definition : 3
fis said to be p — F pseudoconvex at X eX if
F (x,% , V. I (i, y)) + pHX — Q‘
=f(x, y)zf(%, y)
Definition : 4
f is said to be p-F quasiconvex at X eX
if £(x, y)—f(%, y)sO

= F(x,i; V. f (i, y)) + pHX - i‘

2
>0

2
<0 Vx eX

Let X = (xl, xz), xteRM x2 R

and £ RY «x RN 5 R

Mixed type multiobjective fractional dual
Primal Problem

(MFP):minimizef(X _ XY
g(x,y _
(fli (Xl yl) — Vii0y (lel))
+(f2i(Xzayz)_vzigzi(xz’yz))
=t (Xllyl)_vligli (Xlxyl)+3(xl | Cil)+ fa (Xzayz)_vzigzi (szyz)
s(x2|Ci2)—(yl)Tz}— yz)Tzi2 fori=1,... 7,
subject to

(xl,xz,yl,yz,zl,zz,x) eRM xR RII o RI2I

gki [vyl (fli (Xl’ yl) — Vii0y; (le yl)) - Z,l} <0,

D [Vyz (p2i (x2 , y2) V0 (xz, yz)) - 2,2} <0,

i=1
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(V") X [vyz (Fa (X%.¥%) = V202 (Xz,yz))—zf} 20

(xl,xz)zO, z; €Dy and

Dual Problem (MFD)
maximize
fluy) () fa(w'y)
g(u’V)_gli(ul’vl)+gzi(U2,v2)'l_1’ """ ¢
Zf“(ul’vl)_vligli(UlaVl)

+,; (UZ’V2>_V2ig2i (uz’vz)

zfli(ul’vl)_vligli(ul’vl)+f2i(uz’vz)_vzig2i<u2’vz)
— S(v1 | Dil)—s(v2 | Diz)—
(ul)T ooil+(u2)T 0%

subject to
(ul,uz,vl,vz,wl,wz,l) cRM x RP2! R RIFa
xR« RFel 5 R
|

D [Vxl (f1i (ul,vl) —V, 0y (ul, vl)) + oﬂ >0,

i=1

(ul)T ZI:?H [Vxl (f1i (ul,vl) —V,,0;; (ul,vl)) + (o,l} <0,

MV (0% VF) = v (02, V7)) + 02 ] <0,
(vl,vz)zO,
o €Cland o’ eC?,i=1, 2...0.

|
A>0,D A =1
i=1
C; is a compact and convex subsets of R
and
C? is a compact and convex subsets of R

fori=1,... /¢
Similarly Di1 is a compact and convex subsets of Rl

and D? is a compact and convex subsets of R fori =

1,.. ¢
Theorem - 1 (Weak duality)

1 2 1 \,2 51 52

Let (x X5V, Y5, 2,2 ,k) be feasible for (MFP) and
(ul,uz,vl,vz,wl,wz,x) be feasible for (MFD). Suppose
fori=1,., ¢

(fli(., yl)—vlig1i ( yl))+.TW? isp—F convex for
fixed y',

(f1i ( X', .)—vligli(xl.))—.T z;isp—F, concave for
fixed x1,

(f2i (.,yz)—\/Zig2i ( yz))+.TWi2 is p—G, convex for
fixed y2 and

(fz\i(xz.T)—v2i QZi(XZ, .))—.T z?isp-G, concave

for fixed X* and the following conditions are satisfied.

(i) R (x5 Ut a)+(u1)Ta20, if a>0
(ii) G, (x,u%b)+(u?) b=0,if b>0
(iii) Fz(yl,vl;c)+(y1)Tcs0, ifc<0 and

(iv) G,(y?.v%;d)+(y?) d<0,ifd <0.

on f(x.y)_ f(uyv)
" g y) S ofuy)

Proof.
Suppose (X",X*,y",y*,2*,2*, 1) be feasible for (MFP) and

(u',u?, v, V2, W', w? 1) be feasible for (MFD)

By using p — Fq convexity of
fu( y) = vagu (- yl)) +." W! and p-F, concavity of

f,; (xl,.) — vy 0y ( yl))+.Tz? fori=1,.. ¢,

(
(
(fli (xl,vl)—vlig1i (xl, vl))+(x1)T w; -
(f1i (ul,vl) —v,0;; (ul, vl)) —(ul)T w; >

Fl(xl, us v, (fli (ul, vl) —Vyi0y; (ul, vl) +Wil)

2
+p”x1 - u1”

X

a (“(xl,vl)—vligli(xl,vl))—(vl)T z -
(f1i (xl, yl) — vy 0y (xl,yl)) +(y1)T z <
F, (vl,yl;Vyl (f1i (xl,yl) —v0y, (xl,yl)) —z?)+

>F (xl, ut, v, (fli (ul,vl) — V0, )(ul,vl) + W,l)
f

pHv1 —~ yln <F, (vl, yiv, iy (xl, yl) — V0, (xl, yl) — z,l)

From above equations and the sublinearity of F4 and F,
we get
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2 U( ) (0.0 o
{10 v 1)) (o wi ]

Fl(x1,ul,V1 (u v) Vligli)(ul,vl))_'_wil

L) Vg (V)= (v) 2
fli (xl,y1 — vy 0y (xl,yl)) +(y1)T zf]

<F, (Vl, v Z‘}” [vyl (fli (X% ') = va (X yl)) - zﬂj

From constraints conditions, we get

T, 10 ) v () () i) -
(6019 v 0 (01 () w20,
1) v o)) 2)-
F(:u(xl,y_l)_vn,iﬁ(xl,yl))+(yl)T 2|<o.
Zki [(fli (¥ y) = v (4. 97)
(£ (60 = v (1)) o) i = (o)
() 7 -(y) 2 [0

(vl)T z; < s(vl | Df) and (xl)T w; < s(x1 | Cf) fori=1

1
We have

in [(fn (X y!) = vy (X yl)) _
(f“ (ul’vl) ~ Vil (Ul, Vl)) +s(xl | C,l) _(ul)T w!
+s(v'|D}) —(yl)T zi] >0

similarly,

S )t st 7 -
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Strong Duality Theorem :

Let (xl,xz,yl,yz,zl,zz,K) be an efficient

solution for (MFP) such that the Hessian matrices

% xT@ and V&, kTM b
g(xl,yl) g(x y)
definite. Also the sets

{vylfi_zil} {V Zfl—ziz}for i=1,...1
Oy "7 Oa

linearly independent. If the p-F convexity hypothesis and
conditions of theorems 3.1 are satisfied, then

e positive

I1l. SPECIAL CASES

In this section, we consider some special cases of

problems (MFP) and (MFD).

(i)If 1 =1 then (MFP) and (MFD) reduce to the pair of
single objective fractional programming problem.

(i) These results can be further extended to second
order mixed type duality.

(iii) Also the present work can be further extended to a
class of minimax mixed fractional problems.
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